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Know typical failure modes of structures during
earthquakes.
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Know how to estimate the peak forces and 
displacements of structures subjected to 
earthquakes. 

Know how to design new buildings with reinforced
concrete walls.

Know the basic elements of a displacement-based
evaluation of existing structures.
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 Learn to use the plastic hinge method for computing the Force-
displacement capacity of RC sections

 Understand difference between local and global ductilities

 Understand important shortcomings of force-based design

Background:

 RC section analysis

Lecture objectives
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Content

 Computation of the inelastic displacement capacity by means of the plastic hinge
method

• Analysis of moment-curvature relationship

• Plastic hinge method

• Relationship between local and global ductilities

 Shortcomings of force-based design

• How will force-based structures perform during an earthquake?

• Problem 1: Force-based design needs as input an estimate of the initial period of 
the building

• Problem 2: Using the same q-factor does not lead to the same performance

• Problem 3: Force-based design is based on elastic analysis
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Plastic hinge analysis
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Bilinear approximation of 
moment-curvature relationship for 
section that plastifies:
Mn, fy, fu

Bilinear approximation of force-
displacement relationship Fn, Dy, Du

Plastic hinge analysis

Objective: Estimate with
simple means the inelastic
displacement capacity
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Moment-curvature analysis

= Computation of moment for increasing curvature and constant axial force

Required input:

- Geometry of RC section

- Stress-strain relationships of confined and unconfined concrete and of longitudinal reinforcement
bars

Assumptions:

- Linear strain profile («plane sections remaining plane», Bernoulli)

- Perfect bond between reinforcement and concrete Strain only dependent on the distance to 
neutral axis

Moment-curvature analysis
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N = -1099 kN

Moment-curvature relationship
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Procedure: Moment-curvature analysis for a constant axial force N

• Divide section into layers

• Determine for each layer the area of unconfined concrete, confined concrete and reinforcing steel

• Define stress-strain relationship for unconfined concrete, confined concrete and reinforcing steel

• Choose a strain of the extreme compression fibre ec

• Assume a neutral axis depth c

• Compute strain at the centreline of each layer

• Calculate for each layer the concrete and reinforcement stress (from stress-strain relationship)

• Calculate for each layer the concrete and reinforcement forces

• Check whether the sum of all concrete and reinforcement forces gives the axial force N

• If not, modify c and iterate until agreement is satisfactory.

• Compute the moment M and the curvature f

• Increase the strain of the extreme compression fibre ec to compute further points of the moment-
curvature relationship

Moment-curvature analysis
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Moment-curvature analysis
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Moment-curvature analysis – bilinear approximation

Moment-curvature analysis
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“First yield“
es = ey=fy/Es
or
ec = 0.002

“Nominal strength“
es = 0.015
or
ec = 0.004

“Ultimate”
es = es,max or ec = ec,max

fy‘ fy fu

Mn

My‘

“Nominal yield”
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Strain limits for the ultimate curvature capacity:
es,max = 0.5esu where esu is the strain capacity of 
the longitudinal reinforcement
ec,max = strain capacity of confined concrete in 
boundary element (if unconfined: 0.004)
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Plastic hinge analysis
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Bilinear approximation of 
moment-curvature relationship for 
section that plastifies:
Mn, fy, fu

Bilinear approximation of force-
displacement relationship Fn, Dy, Du

Mn

Plastic hinge
analysis
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Plastic hinge method

The plastic hinge method is a very simple model for estimating the inelastic deformation capacity of 

• Slender, ductile RC walls

• RC columns and steel columns

 i.e. elements that form a ductile flexural mechanism and where shear deformations do not play a 
significant role

The bilinear force-displacement response can be constructed by computing the force-displacement 
relationship from:

• the moment-curvature relationship of the section that plastifies,

• the geometry of the structural element, and

• the plastic hinge length.

Three quantities that determine bilinear force-displ. relationship:
• Force capacity Fn

• Yield displacement Dy

• Ultimate displacement capacity Du

Plastic hinge analysis

S
E

IS
M

IC
 E

N
G

IN
E

E
R

IN
G

 -
C

O
U

R
S

E
 1

0

12

D
r.

 F
ra

n
ce

sc
o

 V
a

n
in



Force capacity Fy & Yield displacement Dy

• Assume a linear curvature profile over the shear span Lv

2

3
y

y vL


D  

Plastic hinge analysis
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Ultimate displacement Du

Plastic hinge model

- Hypothesis: The inelastic deformation is concentrated in a plastic hinge. The 
rest of the structure remains elastic. 

- The plastic rotation capacity of the plastic hinge is estimated from the 
ultimate curvature fu and the plastic hinge length Lp. 

Assumptions: 

- The method accounts only for the flexural deformations and neglects the 
shear deformations. 

 The method gives good approximations of the actual displacement capacity
if the shear deformations are relatively small.

- Several methods have been proposed to account for shear deformations but 
they are not uniformly applied. 

Plastic hinge analysis
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Plastic hinge analysis
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Ultimate displacement Du

 2 ( 0.5 )
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D        

Lp =Plastic hinge length
hpl =Plastic zone
hsp =Strain penetration
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Length of the plastic hinge Lp

Semi-empirical equations

PCK07: 

Plastic hinge analysis
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2p v w sp spL kL l L L   

Lv = Mbase/Vbase (Shear span)

lw Length of the wall

Lsp Strain penetration length into foundation

k Coefficient that accounts for the hardening of the longit. reinforcement bars

ft Tensile strength of reinforcement bars

fs Yield strength of reinforcement bars

db Largest diameter of a longitudinal bar in the plastic zone

 Coefficient that accounts for tension shift: 

Walls: =0.1 Columns: =0

0.2 1 0.08t
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   

 
0.022sp b sL d f

SIA 269/8:

 0.08 2p st v sp st spL a L L a L  

0.022sp b sL d f

0.8sta ft/fs<1.15:

1.0sta ft/fs≥1.15: 
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Force-displacement relationship

Plastic hinge analysis
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Plastic hinge analysis
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Example: Plastic hinge analysis for a core wall

Fibre section that was used to compute the moment-curvature relationship

• White fibres: Unconfined concrete

• Green and blue fibres: Confined concrete (different degrees of confinement)

• Red fibres: Reinforcement bars
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Plastic hinge analysis
Example: Moment-curvature analysis and limit curvatures
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f(es) 
[1/m]

esReinf.

0.00280.24 %First yield

0.01261.50 %Nominal

0.05146.30 %Ultimate

Strain capacity of 
reinforcement bars and 
confined concrete

esu=12.6 %
ecu=1.4 %

f(ec) 
[1/m]

ecConcrete

0.06740.2 %First yield

0.4 %Nominal

1.4 %Ultimate
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Plastic hinge analysis
Example: Plastic hinge length according to PCK
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For bending about y-axis

3.35 mLv

1.3 mlw

12 mmdb

595 MPaft

488 MPafy

0.044k

0.147 mkLv

0.1
0.130 mlw

0.129 mLsp

0.406 mLp
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Plastic hinge analysis
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Example: Remark concerning plane-section analysis for core walls

Displacement parallel to web Displacement in diagonal direction

Significant differences between prediction
and experimental results
< Assumption «Plane sections remain
plane» does not hold any more. 

Plane section analysis

Experimental results
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Relation between local and global ductilities
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ef  ≠≠≠D

The different ductilities are not equal:
.. but they are related. The relation 
depends on the type of element (e.g. 
RC wall) and the geometry of the 
element. 

Displacement ductility

Strain ductility, e.g., strain
ductility of longitudinal 
reinforcement

Rotation ductility

Curvature ductility

Strain [%]

Displacement [mm]

Curvature [1/m]

Rotation [-]

Relation between local and global ductilities
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Derive an approximative relation between local and global ductilities by means of the 
plastic hinge method: 

Yield and ultimate displacement:

Local ductility: Curvature ductility

Global ductility: Displacement ductility

Relation between curvature and 

displacement ductility:

Relation between local and global ductilities
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Relationship between curvature ductility and displacement ductility

Relation between local and global ductilities
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@ P. Lestuzzi

Wall slenderness (Lv/lw)
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Content
• Computation of the inelastic displacement capacity by means of the plastic hinge

method

• Analysis of moment-curvature relationship

• Plastic hinge method

• Relationship between local and global ductilities

• Shortcomings of force-based design

• How will force-based structures perform during an earthquake?

• Problem 1: Force-based design needs as input an estimate of the initial period of 
the building

• Problem 2: Using the same q-factor does not lead to the same performance

• Problem 3: Force-based design is based on elastic analysis
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L‘Aquila, April 15 – 18, 2009

Collapse is typically
prevented for the design 
earthquake

Will our structure look like
this?

… or like this?

… or like this?

Problems with force-based design 29
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How will force-based designed buildings perform during an earthquake, i.e., how much 
will they be damaged?

We don’t know!

Force-based design combined with capacity-design protects structures against collapse but we 
do not know how much they will be damaged.

Why force-based design leads to structures that perform very differently during an earthquake, is 
explained with the following slides.

Reference: Tom Paulay «A redefinition of the stiffness of reinforced concrete elements and its 
implication in seismic design»

Problems with force-based design
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Problem 1: Force-based design needs as input an estimate of the initial period 
of the building (i.e., an estimate of stiffness and mass).

For decades one assumed that …

• … the effective stiffness of a RC member is independent of its strength. 

• … the yield curvature depends on the stiffness and the strength. 

However, in reality, …

• … the stiffness of a RC member is dependant on its strength.

• … the yield curvature of a RC member is approximately independent of the member’s 
strength and stiffness.  

 This has important consequences for the force-based design. 

Effective stiffness of RC members
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Effective stiffness of RC members
Stiffness of RC members

• Gross-sectional stiffness (=uncracked stiffness): This stiffness is in general not relevant 
for the seismic analysis. For a design earthquake (return period of 475 years), the RC 
structure will crack. 

• Effective stiffness = «mean stiffness up to the point of yield» (SIA 261, 16.5.5.2). The 
seismic analysis is based on the effective stiffness.
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Definition of the effective stiffness EIeff by means of the moment-curvature
relationship

Effective stiffness of RC members
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Effective stiffness of RC members
Estimation of the effective stiffness

Often: EIeff = 0.3-0.5 EIgross

But is it correct to estimate EIeff as a fixed percentage of EIgross?

S
E

IS
M

IC
 E

N
G

IN
E

E
R

IN
G

 -
C

O
U

R
S

E
 1

0

34

If yes:

If the moment capacity of a RC wall 
section was varied by changing the 
longitudinal reinforcement content or 
the axial force, the effective stiffness 
should remain the same. 

EIeff
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Effective stiffness of RC members
Estimation of the effective stiffness

To find the answer: 

• A large number of moment-curvature analyses for different RC sections and different 
axial forces N and different longitudinal reinforcement contents rl were carried out

• For each configuration, EIgross and EIeff were computed.

• Results for a single RC section:
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One finds:

• The strength is 
strongly dependent on 
N and rl.

• The yield curvature is 
almost independent of  
N and rl.  
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Effective stiffness of RC members
Estimation of the effective stiffness

Good approximation:

• The yield curvature φy is independent of the section strength Mn

• The effective stiffness EIeff is proportional to the section strength Mn
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Effective stiffness of RC members
Estimation of the yield curvature of RC members

• Circular column

• Rectangular column

• Rectangular wall

• Beam with a T-section

ey= Yield strain of the longitudinal reinforcement

S
E

IS
M

IC
 E

N
G

IN
E

E
R

IN
G

 -
C

O
U

R
S

E
 1

0

37

2.10 y
y

ch

e
f 

2.25 y
y D

e
f 

2.00 y
y

wl

e
f 

2.10 y
y

bh

e
f 

D
r.

 F
ra

n
ce

sc
o

 V
a

n
in



Problems with force-based design
Recapitulation of Problem 1:

• The force-based design requires right at the beginning of the seismic design process 
an estimation of the fundamental period and therefore of the effective stiffness. 

 However, at this point in the design process, the strength of the members is unknown 
and therefore also the effective stiffness is not known. 

• As a result, force-based design of RC buildings uses as very crude approximation a 
constant ratio of effective to gross sectional stiffness: EIeff = 0.3-0.5 EIgross

 The period, one of the key input parameters of force-based design, is only very poorly 
estimated. 
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Problems with force-based design
Further problems of force-based design: 

Problem 2: The behaviour factor q is only dependent on the material (for steel structures 
also on the cross section class) and the structural system.

All structures with the same structural system will be designed for the same q-factor (= 
same displacement ductility D). 

The local ductility demand (curvature ductility F) will be very different for different 
elements (e.g. walls of different height). 

The damage to the different elements will be very different (damage is related to local 
ductility demand). 

Problem 3: Force-based design is based on elastic analysis but during a design-level 
earthquake the structure will respond inelastically.

Distributing the design loads in a hyperstatic system based on elastic properties leads 
to an unfavourable distribution. 

 The following examples illustrate these problems. 
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Problems with force-based design
Recapitulation: Behaviour factors q

RC structures in the Swiss code (SIA 262 (2013))

Unreinforced masonry structures: q=1.5

Steel structures: q=2-5 (dependant on the material properties, the structural system, the 
section class)S
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Ductile designNon-ductile 
design

Class of 
reinforcement
steel

Not permittedq=1.5Class A

q=3.0q=2.0Class B

q=4.0q=2.0Class C

Not permittedq=1.5Pretensioned
structure
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Problems with force-based design
2 examples that illustrate problems with force-based design:

• Bridge piers of different height

• Building with walls of different length

S
E

IS
M

IC
 E

N
G

IN
E

E
R

IN
G

 -
C

O
U

R
S

E
 1

0

41

Problem 2

Problem 3

D
r.

 F
ra

n
ce

sc
o

 V
a

n
in



Problem 2: q-factor just dependent on the structural system

q=OSR*D
OSR = Overstrength ratio (Actual strength / 
design strength)

D = Displacement ductility that the structure is 
expected to undergo

Example: Bridge pier with the same 
section but different heights are designed 
for the same q-factor. 

Compare the curvature ductility demands 
that result for the two piers when both are 
designed for the same q-factor. Same cross section

Same natural period T

H

2H

Pier 1

Pier 2

Problems with force-based design
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Problems with force-based design
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Problems with force-based design
Conclusions from example “Piers of different height”

• Designing the two piers for the same q-factor means that both piers are expected to 
undergo the same displacement ductility demand.

• Damage relates to the curvature ductility demand F

• The relationship between F and D depends on the geometry of the structure. 

 Since the geometry of the two structures is different, the damage to the two structures 
(= the performance of the two structures) will be rather different. 
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Problem 3: Distribution of the horizontal force in function of keff=0.5*kgross (i.e. 
effectively in function of kgross)

Example: Walls of different lengths

Problems with force-based design
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System

W1

W2

Compare the longitudinal and shear reinforcement ratios of the three walls that
result from this elastic analysis.

Assume: All walls have the same wall width. 
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Problems with force-based design
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ρHi/ρH3ρi/ρ3Mi/MtotVi/VtotVi/V3Ki/K3LwWall

2LW1

1.5LW2
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Problems with force-based design
Conclusions from example “Walls of different lengths”

• The elastic analysis of hyperstatic systems does often not lead to good design 
solutions concerning the strength distribution between the elements.

• Paulay: 
• Forces were distributed based on elastic properties because one believed that then 

all elements would start yielding at the same time. However, this is not possible as 
the yield curvature depends only on the sections’ dimensions (and not on their 
strength). 

• The strength distribution should be entirely the engineer’s choice.
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Problems with force-based design
Conclusions

• Force-based design suffers from the need of a period estimate right at the beginning of 
the design process when the strength and therefore the effective stiffness of elements 
is not yet known.

• Force-based design is based on elastic analysis. This does often not result in the best 
strength distribution in hyperstatic systems.  The distribution of the horizontal force 
between the different elements should be entirely the choice of the engineer. 

• If force-based design is combined with capacity-design principles, the structures are 
nevertheless well protected against collapse for the design level earthquake.

• However, the damage to the structure (=local ductility demands) will differ significantly 
between structures that were all designed for the same q-factor 

 Non-uniform vulnerability of structures

 Non-uniform performance of structures!
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